

Клапан регулирующий седельный проходной VFM2

Описание и область применения

Регулирующий клапан VFM2 предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Danfoss:

- AVM(E) 10, 13, 23, 33
- ARV(E) 152, 153
- AME655, 658SU/SD

Особенности:

- двойная линейная (Ду 15–50 мм) или логарифмическая характеристика регулирования (Ду 65–250 мм);
- динамический диапазон регулирования
 50:1 (Ду 15–50 мм), 100:1 (Ду 65–250 мм);
- разгруженный по давлению..

Основные характеристики:

- условный проход Ду = 15–250 мм;
- пропускная способность K_{vs} = 0,25–900 м³/ч;
- условное давление Ру = 25 бар (Ду 15– 50 мм), 16 бар (Ду 65–250 мм);
- регулируемая среда: вода или 30% (50%)* водный раствор гликоля;
- температура регулируемой среды: 2 (–10**)–150 °C;
- присоединение к трубопроводу: фланцевое Ру = 25 бар (Ду 15–50 мм), 16 бар (Ду 65–250 мм)
- соответствие стандартам: Директива ЕС по оборудованию, работающему под давлением, 97/23/ЕС.

Номенклатура и коды для оформления заказа

Клапан VFM2

Эскиз	Д _у , мм	К _{vs} , м³/ч	Р _у , бар	ΔР _{кл.} *, бар	Кодовый номер
		0,25			065B3050
		0,4			065B3051
		0,63			065B3052
	15	1,0			065B3053
		1,6		16	065B3054
	1	2,5	25		065B3055
		4,0			065B3056
	20	6,3			065B3057
	25	10			065B3058
	32	16			065B3059
	40	25			065B3060
	50	40			065B3061
	65	63			065B3500
Ī	80	100		16	065B3501
	100	160		10	065B3502
	125	250	16		065B3503
	150	400			065B3504
	200	630		10	065B3505
	250	900			065B3506

 $^{^*\}Delta P_{\kappa n.}$ — максимально допустимый перепад давлений, преодолеваемый электроприводом при закрытии клапана.

Дополнительные принадлежности

Наименование	Д _у клапана, мм	Кодовый номер
По 24 В	65–125	065Z7020
Подогреватель штока, 24 В	150-250	065Z7022

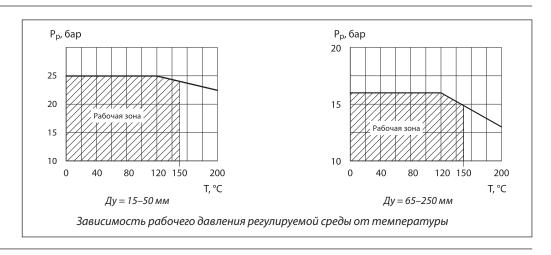
Запасные детали

Наименование	Д _у клапана, мм	Кодовый номер
	15-50	065B2070
Сальниковое уплотнение	65–125	065B3529
	150-250	065B3530

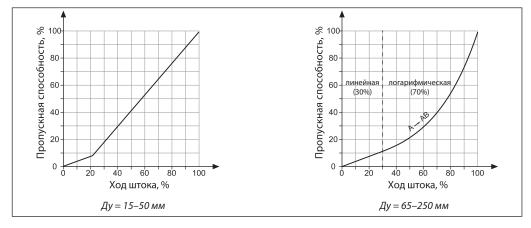
24 RC.08.V10.50 03/2016

^{*} Для Ду 65-250 мм

^{**}При температуре от -10 до 2 °С требуется использовать с подогревателем штока. Только для Ду 65-250 мм


Клапан регулирующий седельный проходной VFM2

Технические характеристики


Условный проход Д _у , мм	15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность К _{vs} , м ³ /ч		6,3	10	16	25	40	63	100	160	250	400	630	900
Ход штока, мм	5	5	7	10	10	10	30	34		40		5	0
Динамический диапазон регулирования			50	:1					Бол	iee 10	0:1		
Характеристика регурирования		Дво	йная л	тиней	ная			J	Тогар	ифмич	ческая	Я	
Коэффициент начала кавитации Z			≥ 0),5			0,45	0,40		0,35		0	,3
Протечка через закрытый клапан, % от K_{vs}	0,05%						0,03						
Условное давление Р _у , бар	25					16							
Макс. перепад давления для закрытия клапана $\Delta P_{\text{макс.}}^{1)}$, бар	16					16 10							
Регулируемая среда	вода или 30% водный раствор гликоля					Вода или 50% водный раствор гликоля							
Температура регулируемой среды Т, °С	2150					2 (-10 ²⁾)–150							
Присоединение	Фланцевое, Р _у =25 бар по стандарту EN 1092-2					Фланцевое, Р _у = 16 бар по стандарту EN 1092-2							
Материалы													
Корпус клапана и крышка	Высокопрочный чугун EN-GJS-400-18-LT (GGG 40.3)					Серый чугун EN-GJL-250 (GG 25)							
Седло, золотник и шток	Нержавеющая сталь					Нержавеющая сталь							
Уплотнение сальника	EPDM					EPDM							

 $^{^{1)}\}Delta P_{\text{макс.}}$ — максимально допустимый перепад давлений, преодолеваемый электроприводом при закрытии клапана.

Условия применения

Характеристика регулирования

 $^{^{2)}}$ При температурах от - 10° С до 2° С необходимо использовать подогреватель штока.

Клапан регулирующий седельный проходной VFM2

Монтаж

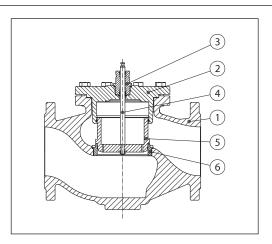
При монтаже клапана необходимо убедиться, чтобы направление движения регулируемой среды совпадало с направлением стрелки на его корпусе.

Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Клапан может быть установлен:

- В любом положении, кроме положения электроприводом вниз (при использовании электроприводов типа AMV(E) 10, 13, 23, 33, 85, 86 и ARV(E) 152, 153)
- В любом положении (при использовании электроприводов типа AME655, 658)

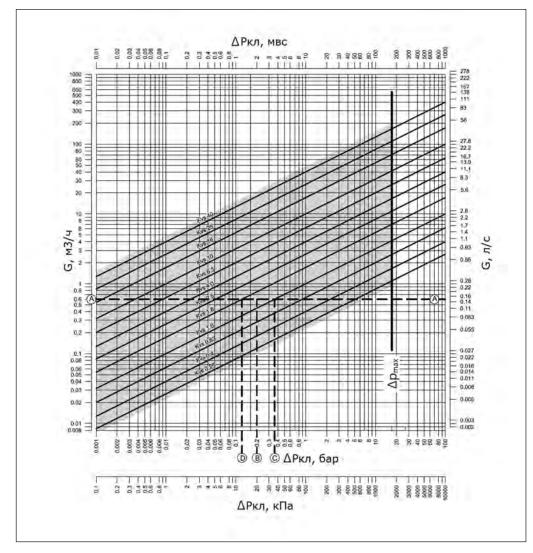
Клапан поставляется зафиксированным в открытом положении.


Необходимо предусмотреть достаточное пространство вокруг клапана с электроприводом для их демонтажа и обслуживания.

Электропривод может быть повернут вокруг своей оси (на 360°) в удобное для обслуживания положение, для чего следует ослабить крепление привода на клапане.

Утилизация

Перед утилизацией клапаны должны быть разобраны, а детали рассортированы по группам материалов.


Устройство клапана (для Ду 65-250 мм)

- 1 корпус клапана;
- 2 крышка клапана;
- 3 сальник;
- 4 шток;
- 5 золотник (разгружен по давлению);
- 6 седло.

Выбор типоразмера клапана (для Ду 15-50 мм)

Пример выбора клапана

Требуется выбрать регулирующий клапан для нижеследующих условий:

Исходные данные

Тепловая нагрузка: G = 14 кВт. Перепад температур теплоносителя: $\Delta T = 20 \, ^{\circ}\text{C}$

Перепад давлений в системе: $\Delta P_{\kappa n.} = 20 \; \kappa \Pi a.$

Решение

Расход теплоносителя через клапан:
$$G = \frac{0.86 \cdot Q}{\Delta T} = \frac{0.86 \cdot 14}{20} = 0.6 \text{ m}^3/\text{ч}.$$

Проведя на диаграмме горизонтальную линию от расхода 0,6 м³/ч (линия A–A) находят перепады давлений на клапане с разным K_{vs} .

Идеальный клапан выбирают таким образом, чтобы его авторитет был 0,5 или больше.

Авторитет клапана выражается следующей зависимостью (если $\Delta P1 = \Delta P2$):

ABT. =
$$\Delta P1/2 \cdot \Delta P1 = 0.5$$
.

где $\Delta P1$ — перепад давлений на полностью открытом клапане;

ΔР2 — перепад давлений в системе.

В данном примере при расходе 0,6 $м^3/ч$ авторитет клапана будет равен 0,5 при перепаде давлений на нем в 20 кПа (точка В).

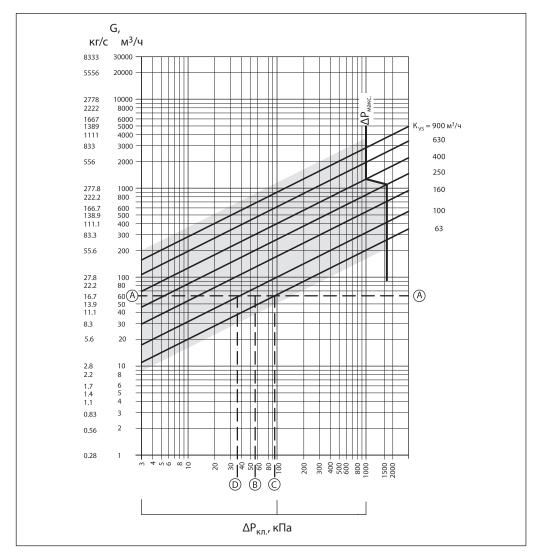
Пересечение линии A–A с вертикальной линией, проведенной из точки B, лежит между двух диагоналей K_{vs}. Это означает, что идеальный клапан для данного примера подобрать нельзя.

Пересечение линии A–A с диагоналями K_{vs} покажет перепады давлений на реальных, а не идеальных клапанах.

В первом случае клапан с пропускной способностью $K_v s = 1,0 \; m^3/ч$ обеспечит перепад давлений в 37 кПа (точка C).

Отсюда авторитет клапана:

$$ABT. = 37/37 + 20 = 0,65.$$


Во втором случае клапан с пропускной способностью $K_{vs}=1,6\ m^3/ч$ обеспечит перепад давления в 13 кПа (точка D). Отсюда авторитет клапана:

$$ABT. = 13/13 + 20 = 0,39.$$

RC.08.V10.50 03/2016 27

Выбор типоразмера клапана (для Ду 65-250 мм)

Пример выбора клапана

Исходные данные

Расход воды:

 $G = 60 \text{ m}^3/\text{ч}.$

Потеря давления в регулируемой системе: $\Delta P_c = 55 \ \mbox{к} \ \mbox{Па}.$

Решение

Проведя на диаграмме горизонтальную линию от расхода $60\,{\rm m}^3/{\rm u}$ (линия A–A) находят перепады давлений на клапане с разным ${\rm K}_{\rm vs}$.

Идеальный клапан выбирают таким образом, чтобы его авторитет был 0,5 или больше.

Авторитет клапана выражается следующей зависимостью:

$$a = \frac{\Delta P_1}{\Delta P_1 + \Delta P_2},$$

где ΔP_1 — перепад давлений на полностью открытом клапане;

 ΔP_2 — перепад давлений в системе.

Если $\Delta P_1 = \Delta P_2$, то

$$a = \Delta P_1/2 \cdot \Delta P_1 = 0.5.$$

В данном примере при расходе 60 м 3 /ч авторитет клапана будет равен 0,5 при перепаде давлений на нем в 55 кПа (точка В). Пересечение линии А–А с вертикальной линией, проведенной из точки В, лежит между двух диагоналей K_{vs} . Это означает, что идеальный клапан для данного примера подобрать нельзя.

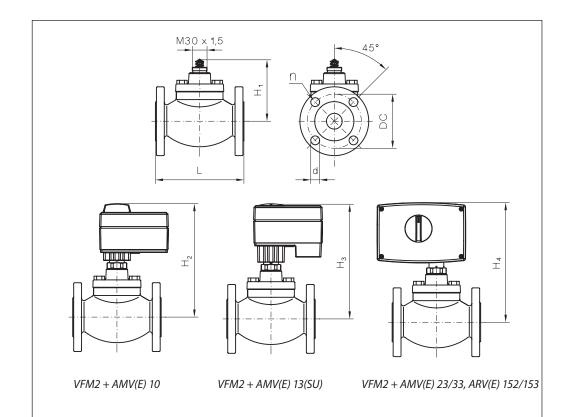
Пересечение линии A-A с диагоналями K_{vs} покажет перепады давлений на реальных, а не идеальных клапанах.

В первом случае клапан с пропускной способностью $K_{vs} = 63 \text{ м}^3/\text{ч}$ обеспечит перепад давлений в 90,7 кПа (точка C).

Отсюда авторитет клапана:

$$a = 90,7/90,7 + 55 = 0,62.$$

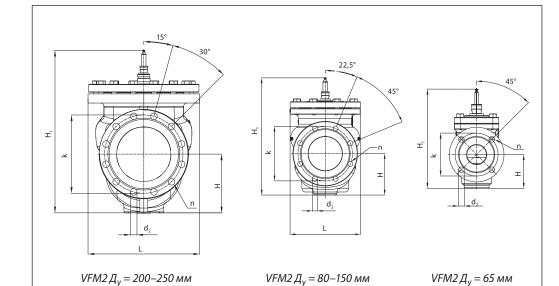
Во втором случае клапан с пропускной способностью $K_{vs}=100\ m^3/ч$ обеспечит перепад давления в 36 кПа (точка D).

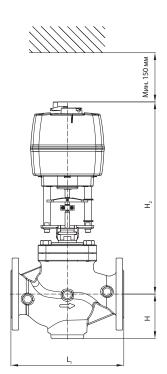

Отсюда авторитет клапана:

$$a = 36/36 + 55 = 0,395.$$

28 RC.08.V10.50 03/2016

Габаритные и присоединительные размеры


Тип	Ход	Размеры, мм						Кол-во	Macca,	
	штока, мм	H ₁	H ₂	H ₃	H ₄	L	DC	d	отв. п	КГ
VFM2 15	5	99	192	195	205	130	65	14	4	3,40
VFM2 20	5	99	192	195	205	150	75	14	4	4,23
VFM2 25	7	99	_	_	205	160	85	14	4	4,65
VFM2 32	10	123	_	_	229	180	100	18	4	8,40
VFM2 40	10	123	_	_	229	200	110	18	4	9,24
VFM2 50	10	123	_		229	230	125	18	4	10,91


Тип	Д _у , мм	K _{vs} , м³/ч	AMV(E) 10/13(SU)	AMV(E) 23/33; ARV(E) 152/153
VFM2	15–20	0,25-3,6	•	•
VFIVIZ	25-50	10-40	_	•

RC.08.V10.50 03/2016 **29**

Габаритные и присоединительные размеры

(продолжение)

Тип	п	Размеры, мм								
	Д _у , мм	L	L ₁	Н	H ₁	H ₂	k	d	отв. п	
	65	185	290	114	290	493,5	145	19	4	
	80	200	310	114	310	494,5	160	19	8	
	100	242	350	148	350	528,5	180	19	8	
VFM2	125	242	400	149	400	529,5	210	19	8	
	150	310	480	182,5	512	628,5	240	22	8	
	200	389	600	245	600	686	295	23	12	
	250	500	730	267	730	732	355	26	12	

30 RC.08.V10.50 03/2016